Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
J. appl. oral sci ; 28: e20190558, 2020. graf
Article in English | LILACS, BBO | ID: biblio-1101249

ABSTRACT

Abstract Objective Ameloblastoma is a representative odontogenic tumor comprising several characteristic invasive forms, and its pathophysiology has not been sufficiently elucidated. A stable animal experimental model using immortalized cell lines is crucial to explain the factors causing differences among the subtypes of ameloblastoma, but this model has not yet been disclosed. In this study, a novel animal experimental model has been established, using immortalized human ameloblastoma-derived cell lines. Methodology Ameloblastoma cells suspended in Matrigel were subcutaneously transplanted into the heads of immunodeficient mice. Two immortalized human ameloblastoma cell lines were used: AM-1 cells derived from the plexiform type and AM-3 cells derived from the follicular type. The tissues were evaluated histologically 30, 60, and 90 days after transplantation. Results Tumor masses formed in all transplanted mice. In addition, the tumors formed in each group transplanted with different ameloblastoma cells were histologically distinct: the tumors in the group transplanted with AM-1 cells were similar to the plexiform type, and those in the group transplanted with AM-3-cells were similar to the follicular type. Conclusions A novel, stable animal experimental model of ameloblastoma was established using two cell lines derived from different subtypes of the tumor. This model can help clarify its pathophysiology and hasten the development of new ameloblastoma treatment strategies.


Subject(s)
Animals , Female , Mice , Ameloblastoma/pathology , Disease Models, Animal , Neoplasms, Experimental/pathology , Proteoglycans , Time Factors , Immunohistochemistry , Cells, Cultured , Reproducibility of Results , Collagen , Laminin , Cell Line, Tumor , Green Fluorescent Proteins/analysis , Drug Combinations
2.
São Paulo; s.n; s.n; 2017. 111p tab, ilus, graf.
Thesis in Portuguese | LILACS | ID: biblio-876401

ABSTRACT

Este trabalho tem como finalidade estudar as melhores condições do cultivo da microalga Chlamydomonas reindhartii geneticamente modificada para a produção da proteína fluorescente mCherry a partir do estudo dos macronutrientes contidos no meio de cultivo. A proteína mCherry possui a vantagem de ser facilmente detectada no meio de cultivo por espectofotometria convencional, convertendo-se, desta forma, em uma molécula interessante para o estudo como modelo de expressão. Inicialmente, foram estudadas três diferentes fontes de nitrogênio para avaliar a expressão da proteína recombinante. Os resultados indicaram que a melhor fonte de nitrogênio para a produção da mCherry foi o NH4NO3. Em seguida, para avaliar os efeitos gerados pelos macronutrientes (acetato, cloreto de cálcio, sultato de magnésio, nitrato de amônio e fostato total) contidos no meio de cultivo TAP, foi realizado um planejamento composto central 25, em cultivos em microplacas, sendo os resultados avaliados por regressão multivariada. Além disso, a análise realizada por regressão multivariada indicou que, dos níveis avaliados das variáveis, as condições que melhor atendem à otimização da produção de mCherry e crescimento celular são: acetato, 33,35 mM; cloreto de cálcio, 0,45 mM; sulfato de magnésio, 0,83 mM; nitrato de amônio, 10,31 mM; fosfato total, 1,96 mM. Essas condições foram escolhidas para cultivo em fotobiorreator tubular, onde foi obtido título de fluorescência de mCherry a 608 nm de 59209 UF, correspondendo a um aumento de 118,5% maior que o título de fluorescência obtido com uso de meio TAP padrão. Com a finalidade de seguir com os processos de produção foi disenhado um biorreator tipo coluna e foi reaizado um estudio de produção em sistema semicontinuo. Os resultados obtidos demostraram que o sistema semicontinuo aumento 2,6 veces a produtividade da biomassa


This work aims to study the best conditions of the cultivation of the microalgae Chlamydomonas reindhartii genetically modified for the production of the fluorescent protein mCherry from the study of the macronutrients contained in the culture medium. The mCherry protein has the advantage of being easily detected in the culture medium by conventional spectrophotometry, thus becoming an interesting molecule for the study as an expression model. Initially, three different nitrogen sources were studied to evaluate the expression of the recombinant protein. The results indicated that the best source of nitrogen for the production of mCherry was NH4NO3. Then, to evaluate the effects generated by macronutrients (acetate, calcium chloride, magnesium sulphate, ammonium nitrate and total phosphate) contained in the TAP culture medium, a central composite 25 was carried out in cultures on microplates, Results evaluated by multivariate regression. In addition, multivariate regression analysis indicated that, from the evaluated levels of the variables, the conditions that best serve the optimization of mCherry production and cell growth are: acetate, 33.35 mM; Calcium chloride, 0.45 mM; Magnesium sulfate, 0.83 mM; 10.31 mM ammonium nitrate; Total phosphate, 1.96 mM. These conditions were chosen for cultivation in tubular photobioreactor where fluorescence titre of mCherry at 608 nm of 59209 UF was obtained, corresponding to an increase of 118.5% greater than the titer of fluorescence obtained using standard TAP medium. In order to follow the production processes, a column type bioreactor was designed and a production study was carried out in a semicontinuous system. The results showed that the semicontinuous system increased 2.6 times the productivity of the biomass


Subject(s)
Chlamydomonas reinhardtii/growth & development , Green Fluorescent Proteins/analysis , Photobioreactors , Microalgae/growth & development , Nitrogen
3.
Int. braz. j. urol ; 40(4): 553-561, Jul-Aug/2014. tab, graf
Article in English | LILACS | ID: lil-723952

ABSTRACT

Objective This study aims to observe the function of umbilical cord-mesenchymal stem cells (UC-MSCs) labelled with enhanced green fluorescent protein (eGFP) in the repair of renal ischaemia-reperfusion (I/R) injury, to determine the effects on inflammatory cascade in an established rat model and to explore possible pathogenesis. Materials and Methods Sixty rats were randomly divided into three groups: the sham-operated, I/R and UC-MSC treatment groups. All rats underwent right nephrectomy. Ischaemia was induced in the left kidney by occlusion of the renal artery and vein for 1hour, followed by reperfusion for 24 hours or 48 hours. Kidney samples were collected to observe morphological changes. Immunohistochemistry was performed to assess the expression of intercellular adhesion molecule 1 (ICAM-1) in the renal tissue sample, as well as the number of infiltrating polymorphonuclear neutrophils (PMNLs) and UC-MSCs with positive eGFP. Results Renal histopathological damages and the expression of ICAM-1 and PMNL increased significantly in the I/R group compared with those in the sham-operated group, whereas the damages were less conspicuous in the UC-MSC treatment group. Conclusions Renal ICAM-1, which mediated PMNL infiltration and contributed to renal damage, was significantly up-regulated in the I/R group. UC-MSCs were identified to inhibit these pathological processes and protect the kidney from I/R injury. .


Subject(s)
Animals , Humans , Male , Kidney/blood supply , Mesenchymal Stem Cell Transplantation/methods , Reperfusion Injury/therapy , Umbilical Cord/cytology , Disease Models, Animal , Green Fluorescent Proteins/analysis , Immunohistochemistry , Intercellular Adhesion Molecule-1/analysis , Kidney/pathology , Mesenchymal Stem Cells/physiology , Random Allocation , Rats, Sprague-Dawley , Reproducibility of Results , Reperfusion Injury/pathology , Time Factors , Treatment Outcome
4.
Braz. j. microbiol ; 42(1): 114-125, Jan.-Mar. 2011. ilus
Article in English | LILACS | ID: lil-571382

ABSTRACT

The events involved in the structural interaction between the diazotrophic endophytic bacterium Herbaspirillum seropedicae, strain RAM10, labeled with green fluorescent protein, and pineapple plantlets 'Vitória' were evaluated by means of bright-field and fluorescence microscopy, combined with scanning electron microscopy for 28 days after inoculation. After 6 hours of inoculation, H. seropedicae was already adhered to the roots, colonizing mainly root hair surface and bases, followed by epidermal cell wall junctions. Bacteria adherence in the initial periods occurred mainly in the form of solitary cells and small aggregates with pleomorphic cells. Bacteria infection of root tissue occurred through the cavities caused by the disruption of epidermal cells during the emergence of lateral roots and the endophytic establishment by the colonization of intercellular spaces of the cortical parenchyma. Moreover, within 1 day after inoculation the bacteria were colonizing the shoots. In this region, the preferred sites of epiphytic colonization were epidermal cell wall junctions, peltate scutiform trichomes and non-glandular trichomes. Subsequently, the bacteria occupied the outer periclinal walls of epidermal cells and stomata. The penetration into the shoot occurred passively through stoma aperture followed by the endophytic establishment on the substomatal chambers and spread to the intercellular spaces of spongy chlorenchyma. After 21 days of inoculation, bacterial biofilm were seen at the root hair base and on epidermal cell wall surface of root and leaf, also confirming the epiphytic nature of H. seropedicae.


Subject(s)
Ananas/growth & development , Ananas/genetics , Biofilms , Cell Wall , Nitrogen Fixation/genetics , Herbaspirillum/growth & development , Herbaspirillum/isolation & purification , In Vitro Techniques , Microscopy, Electron , Green Fluorescent Proteins/analysis , Genetic Techniques , Methods , Microscopy, Fluorescence , Plants
5.
Biol. Res ; 44(3): 229-234, 2011. ilus, tab
Article in English | LILACS | ID: lil-608618

ABSTRACT

Testis-mediated gene transfer (TMGT) has been used as in vivo gene transfer technology to introduce foreign DNA directly into testes, allowing mass gene transfer to offspring via mating. In this study, we used plasmid DNA (pEGFP-N1) mixed with dimethylsulfoxide (DMSO), N,N-dimethylacetamide (DMA) or liposome (Lipofectin) in an attempt to improve TMGT. Males receiving consecutive DNA complex injections were mated to normal females to obtain F0 progeny. In vivo evaluation of EGFP expression, RT-PCR and PCR were used to detect the expression and the presence of exogenous DNA in the progeny. We also evaluated possible testicular damage by histological procedures. PC R and RT-PCR analyses revealed that liposome and DMSO increased the rate of TMGT. Histological analyses demonstrated that repeated (4 times) injections of DNA complexes can affect spermatogenesis. DMSO was the most deleterious among the reagents tested. In this study, we detected the presence of transgene in the progeny, and its expression in blood cells. Consecutive injections of DNA complexes were associated with impaired spermatogenesis, suggesting requirement of optimal conditions for DNA delivery through TMGT.


Subject(s)
Animals , Female , Mice , Dimethyl Sulfoxide/pharmacology , Gene Transfer Techniques , Green Fluorescent Proteins/administration & dosage , Mice, Transgenic/genetics , Testis , Transgenes , Animals, Genetically Modified , Genetic Vectors/administration & dosage , Genetic Vectors/genetics , Green Fluorescent Proteins/analysis , Green Fluorescent Proteins/genetics , Liposomes/pharmacology , Mice, Inbred BALB C , Polymerase Chain Reaction , Testis/drug effects , Testis/pathology , Transfection/methods
6.
Indian J Exp Biol ; 2007 Jan; 45(1): 48-57
Article in English | IMSEAR | ID: sea-56125

ABSTRACT

Microscopy has become an essential tool for cellular protein investigations. The development of new fluorescent markers such as green fluorescent proteins generated substantial opportunities to monitor protein-protein interactions qualitatively and quantitatively using advanced fluorescence microscope techniques including wide-field, confocal, multiphoton, spectral imaging, lifetime, and correlation spectroscopy. The specific aims of the investigation of protein dynamics in live specimens dictate the selection of the microscope methodology. In this article confocal and spectral imaging methods to monitor the dimerization of alpha enhancer binding protein (C/EBPalpha) in the pituitary GHFT1-5 living cell nucleus have been described. Also outline are issues involved in protein imaging using light microscopy techniques and the advantages of lifetime imaging of protein-protein interactions.


Subject(s)
Animals , CCAAT-Enhancer-Binding Protein-alpha/analysis , Cell Nucleus/chemistry , Cells, Cultured , Dimerization , Fluorescence Resonance Energy Transfer/methods , Green Fluorescent Proteins/analysis , Mice , Microscopy, Confocal/methods , Pituitary Gland/cytology , Protein Interaction Mapping/methods
7.
São Paulo; s.n; 1 set. 2006. 136 p. ilus, tab, graf.
Thesis in Portuguese | LILACS | ID: lil-450136

ABSTRACT

Devido ao número crescente de surtos de infecção hospitalar, torna-se proeminente o estabelecimento de um programa de sanitização que liste os agentes químicos a serem empregados e o modo de aplicação mais efetivo. Processos de desinfecção também são relevantes em sistemas de tratamento de água (em indústrias farmacêuticas e centros de saúde) para que a qualidade da água seja assegurada e atenda os parâmetros estabelecidos, evitando proliferação microbiana. Validação da eficácia de descontam inação é uma tarefa ao mesmo tempo importante e desafiadora. Indicadores biológicos são sistemas ou moléculas que detectam atividade biológica, permitindo a validação de processos de descontaminação ou desinfecção. O indicador biológico pode ser uma suspensão de microrganismos específicos (sistema biológico) com resistência definida a um determinado processo de descontam inação. Enzimas e proteínas também têm sido empregadas como indicadores biológicos para avaliar a eficácia de processos industriais. A proteína verde fluorescente (GFP) tem sido sugerida como potencial indicador biológico para tratamentos de desinfecção, devido facilidade de sua detecção por espectrofluorimetria ou por inspeção visual. Para estudar e comparar o comportamento dos microrganismos selecionados e da GFP foram realizados ensaios de concentração inibitória mínima (CIM) e tempo de redução decimal (valor D). A CIM capaz de reduzir o bioburden inicial (>`8log IND. 10’) foi: 59 - 156 mg/L de quartenários de amônia; 63 - 10000 mg/L de clorexidina, 1375 - 3250 mg/mL de glutaraldeído, 39 - 246 mg/L de formaldeído, 43750 - 87500 mg/L de álcool etílico 1250 - 6250 mg/L de polivinilpirrolidona iodo, 150 - 4491 mg/L de compostos liberadores de cloro, 469 -2500 mg/L de peróxido de hidrogênio e 2310 – 18500 mg/L de ácido peracético...


Subject(s)
Environmental Biomarkers , Cross Infection , Disinfectants , Disinfection , Green Fluorescent Proteins/analysis , Water Pollution , Biotechnology , Fluorescence , Water Quality
SELECTION OF CITATIONS
SEARCH DETAIL